Seong Keon Lee
In many application fields, multivariate approaches that simultaneously consider the correlation between responses are needed. The tree method can be extended to multivariate responses, such as repeated measure and longitudinal data, by modifying the split function so as to accommodate multiple responses. Recently, researchers have constructed some decision trees for multiple continuous longitudinal response and multiple binary responses using Mahalanobis distance and a generalized entropy index. However, these methods have limitations according to the type of response, that is, those that are only continuous or binary. In this paper, we will modify the tree for univariate response procedure and suggest a new tree-based method that can analyze any type of multiple responses by using GEE (generalized estimating equations) techniques. To compare the performance of trees, simulation studies on selection probability of true split variable will be shown. Finally, applications using epileptic seizure data and WWW data are introduced
© 2008-2024 Fundación Dialnet · Todos los derechos reservados