Ir al contenido

Documat


Cycles for Rational Maps of Good Reduction Outside a Prescribed Set

  • Autores: Jung Kyu Canci
  • Localización: Monatshefte für mathematik, ISSN 0026-9255, Vol. 149, Nº 4, 2006, págs. 265-287
  • Idioma: inglés
  • DOI: 10.1007/s00605-006-0387-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let K be a number field and S a fixed finite set of places of K containing all the archimedean ones. Let R S be the ring of S-integers of K. In the present paper we study the cycles in for rational maps of degree =2 with good reduction outside S. We say that two ordered n-tuples (P 0, P 1,¿ ,P n-1) and (Q 0, Q 1,¿ ,Q n-1) of points of are equivalent if there exists an automorphism A ? PGL2(R S ) such that P i = A(Q i ) for every index i?{0,1,¿ ,n-1}. We prove that if we fix two points , then the number of inequivalent cycles for rational maps of degree =2 with good reduction outside S which admit P 0, P 1 as consecutive points is finite and depends only on S and K. We also prove that this result is in a sense best possible


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno