Two integral representations of q-analogues of the Hurwitz zeta function are established. Each integral representation allows us to obtain an analytic continuation including also a full description of poles and special values at non-positive integers of the q-analogue of the Hurwitz zeta function, and to study the classical limit of this q-analogue. All the discussion developed here is entirely different from the previous work in [5].
© 2008-2024 Fundación Dialnet · Todos los derechos reservados