Ir al contenido

Documat


Torsional rigidity of minimal submanifolds

  • Autores: Steen Markvorsen Árbol académico, Vicente Palmer Andreu Árbol académico
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 93, Nº 1, 2006, págs. 253-272
  • Idioma: inglés
  • DOI: 10.1017/s0024611505015716
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped product model spaces. Our main results are obtained via previously established isoperimetric inequalities, which are here extended to hold for this more general setting based on warped product comparison spaces. We also characterize the geometry of those situations in which the upper bounds for the torsional rigidity are actually attained and give conditions under which the geometric average of the stochastic mean exit time for Brownian motion at infinity is finite.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno