Ir al contenido

Documat


Homological transcendence degree

  • Autores: Amnon Yekutieli, James J. Zhang
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 93, Nº 1, 2006, págs. 105-137
  • Idioma: inglés
  • DOI: 10.1017/s0024611505015698
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $D$ be a division algebra over a base field $k$. The homological transcendence degree of $D$, denoted by $\text{Htr}\; D$, is defined to be the injective dimension of the algebra $D \otimes_k D^{\circ}$. We show that $\text{Htr}$ has several useful properties which the classical transcendence degree has. We extend some results of Resco, Rosenberg, Schofield and Stafford, and compute $\text{Htr}$ for several classes of division algebras. The main tool for the computation is Van den Bergh's rigid dualizing complex.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno