Ir al contenido

Documat


A sequentially unconditional Banach space with few operators

  • Autores: Spiros A. Argyros, Antonis Manoussakis
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 91, Nº 3, 2005, págs. 789-818
  • Idioma: inglés
  • DOI: 10.1112/s0024611505015388
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A Banach space $X$ is said to be sequentially unconditional if every Schauder basic sequence has an unconditional subsequence. We provide an example of a reflexive Banach space $X_{isu}$ which is sequentially unconditional and such that every $T \in \mathcal{L}(X_{isu})$ is a strictly singular perturbation of a multiple of the identity. The space $X_{isu}$ belongs to the class of Banach spaces with saturated and conditional structure. Constructing $X_{isu}$ we follow the general scheme invented by W. T. Gowers and B. Maurey in their celebrated construction of a Hereditarily Indecomposable Banach space. The new ingredient concerns the definition of the special (conditional) functionals. For this we use a non-injective coding function $\sigma$ in conjunction with a Baire-like property of a sequence of countable trees stated and proved in the present paper. It is worth mentioning that $X_{isu}$ admits a richer unconditional structure than classical spaces like $L^1(0,1)$ and it remains unsettled whether $X_{isu}$ is a subspace of a Banach space with an unconditional basis.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno