Ir al contenido

Documat


Root numbers of non-abelian twists of elliptic curves

  • Autores: Vladimir Dokchitser
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 91, Nº 2, 2005, págs. 300-324
  • Idioma: inglés
  • DOI: 10.1112/s0024611505015261
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the global root number of the complex $L$-function of twists of elliptic curves over $\mathbb{Q}$ by real Artin representations. We obtain examples of elliptic curves over $\mathbb{Q}$ which, while not having any rational points of infinite order, conjecturally must have points of infinite order over the fields $\mathbb{Q}( \sqrt[3] {m} )$ for every cube-free $m > 1$. We describe analogous phenomena for elliptic curves over the fields $\mathbb{Q}( \sqrt[r] {m} )$, and in the towers $(\mathbb{Q}( \sqrt[r^n] {m})_{n \ge 1} )$ and $(\mathbb{Q}( \sqrt[r^n] {m}, \mu_{r^n})_{n \ge 1})$, where $r \ge 3$ is prime.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno