Ir al contenido

Documat


Local Nash Inequality and Inhomogeneity of Heat Kernels

  • Autores: Jun Kigami
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 89, Nº 2, 2004, págs. 525-544
  • Idioma: inglés
  • DOI: 10.1112/s0024611504014807
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The local Nash inequality is introduced as a natural extension of the classical Nash inequality yielding a space-homogeneous upper heat kernel estimate. The local Nash inequality contains local information of the heat kernel and is a necessary condition for the space-inhomogeneous heat kernel estimate involving the volume of balls like the one obtained by Li and Yau for a complete Riemannian manifold with non-negative Ricci curvature. Under the volume doubling property, the local Nash inequality combined with the exit time estimate is shown to be equivalent to a sub-Gaussian off-diagonal upper estimate of the heat kernel allowing space-inhomogeneity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno