Ir al contenido

Documat


The locally finite part of the dual coalgebra of quantized irreducible flag manifolds

  • Autores: I. Heckenberger, S. Kolb
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 89, Nº 2, 2004, págs. 457-484
  • Idioma: inglés
  • DOI: 10.1112/s0024611504014777
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For quantized irreducible flag manifolds the locally finite part of the dual coalgebra is shown to coincide with a natural quotient coalgebra $\overline{U}$ of $U_q ( \mathfrak{g} )$. On the way the coradical filtration of $\overline{U}$ is determined. A graded version of the duality between $\overline{U}$ and the quantized coordinate ring is established. This leads to a natural construction of several examples of quantized vector spaces.

      As an application, covariant first order differential calculi on quantized irreducible flag manifolds are classified.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno