Ir al contenido

Documat


Decomposition Rank of Subhomogeneous C*-Algebras

  • Autores: Wilhelm Winter
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 89, Nº 2, 2004, págs. 427-456
  • Idioma: inglés
  • DOI: 10.1112/s0024611504014716
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We analyze the decomposition rank (a notion of covering dimension for nuclear C*-algebras introduced by E. Kirchberg and the author) of subhomogeneous C*-algebras. In particular, we show that a subhomogeneous C*-algebra has decomposition rank $n$ if and only if it is recursive subhomogeneous of topological dimension $n$, and that $n$ is determined by the primitive ideal space.

      As an application, we use recent results of Q. Lin and N. C. Phillips to show the following. Let $A$ be the crossed product C*-algebra coming from a compact smooth manifold and a minimal diffeomorphism. Then the decomposition rank of $A$ is dominated by the covering dimension of the underlying manifold.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno