Ir al contenido

Documat


The Brauer-Siegel theorem

  • Autores: Stéphane R. Louboutin
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 72, Nº 1, 2005, págs. 40-52
  • Idioma: inglés
  • DOI: 10.1112/s0024610705006654
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Explicit bounds are given for the residues at of the Dedekind zeta functions of number fields. As a consequence, a simple proof of the Brauer-Siegel theorem and explicit lower bounds for class numbers of number fields are obtained. Compared with Stark's original approach, the paper is explicit and more satisfactory for number fields containing quadratic subfields. Examples are given of fully explicit lower bounds for class numbers of various types of number fields, for example normal and non-normal number fields of odd degree, with an emphasis on cubic fields, real cyclic quartic number fields, and non-normal quartic number fields containing an imaginary quadratic subfield.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno