Ir al contenido

Documat


Metrics on diagram groups and uniform embeddings in a Hilbert space

  • Autores: Goulnara Arzhantseva, V.S. Guba, Mark V. Sapir
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 81, Nº 4, 2006, págs. 911-929
  • Idioma: inglés
  • DOI: 10.4171/cmh/80
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give first examples of finitely generated groups having an intermediate, with values in $(0,1)$, Hilbert space compression (which is a numerical parameter measuring the distortion required to embed a metric space into Hilbert space). These groups include certain diagram groups. In particular, we show that the Hilbert space compression of Richard Thompson's group $F$ is equal to $1/2$, the Hilbert space compression of $\mathbb{Z}\wr\mathbb{Z}$ is between $1/2$ and $3/4$, and the Hilbert space compression of $\mathbb{Z}\wr(\mathbb{Z}\wr\mathbb{Z})$ is between 0 and $1/2$. In general, we find a relationship between the growth of $H$ and the Hilbert space compression of $\mathbb{Z}\wr H$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno