Ir al contenido

Documat


Algebraic Reduction Theorem for complex codimension one singular foliations

  • Autores: Dominique Cerveau Árbol académico, Alcides Lins-Neto, Frank Loray Árbol académico, J.V. Pereira, Frédéric Touzel
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 81, Nº 1, 2006, págs. 157-169
  • Idioma: inglés
  • DOI: 10.4171/cmh/47
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $M$ be a compact complex manifold equipped with $n=\dim(M)$ meromorphic vector fields that are linearly independent at a generic point. The main theorem is the following. If $M$ is not bimeromorphic to an algebraic manifold, then any codimension one complex foliation $\mathcal F$ with a codimension $\ge2$ singular set is the meromorphic pull-back of an algebraic foliation on a lower dimensional algebraic manifold, or $\mathcal F$ is transversely projective outside a proper analytic subset. The two ingredients of the proof are the Algebraic Reduction Theorem for the complex manifold $M$ and an algebraic version of Lie's first theorem which is due to J. Tits


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno