Ir al contenido

Documat


Intersection homology and Alexander modules of hypersurface complements

  • Autores: Laurentiu G. Maxim
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 81, Nº 1, 2006, págs. 123-155
  • Idioma: inglés
  • DOI: 10.4171/cmh/46
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $V$ be a degree $d$, reduced hypersurface in $\mathbb{CP}^{n+1}$, $n \geq 1$, and fix a generic hyperplane, $H$. Denote by $\mathcal{U}$ the (affine) hypersurface complement, $\mathbb{CP}^{n+1}-V \cup H$, and let $\mathcal{U}^c$ be the infinite cyclic covering of $\mathcal{U}$ corresponding to the kernel of the total linking number homomorphism. Using intersection homology theory, we give a new construction of the Alexander modules $H_i(\mathcal{U}^c;\mathbb{Q})$ of the hypersurface complement and show that, if $i \leq n$, these are torsion over the ring of rational Laurent polynomials. We also obtain obstructions on the associated global polynomials: their zeros are roots of unity of order $d$ and are entirely determined by the local topological information encoded by the link pairs of singular strata of a stratification of the pair $(\mathbb{CP}^{n+1},V)$. As an application, we give obstructions on the eigenvalues of monodromy operators associated to


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno