Ir al contenido

Documat


Composition factors of quotients of the universal enveloping algebra by primitive ideals

  • Autores: Catharina Stroppel
  • Localización: Journal of the London Mathematical Society, ISSN 0024-6107, Vol. 70, Nº 3, 2004, págs. 643-658
  • Idioma: inglés
  • DOI: 10.1112/s0024610704005708
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Graded versions of the principal series modules of the category of a semisimple complex Lie algebra are defined. Their combinatorial descriptions are given by some Kazhdan-Lusztig polynomials. A graded version of the Duflo-Zhelobenko four-term exact sequence is proved. This gives results about composition factors of quotients of the universal enveloping algebra of by primitive ideals; in particular an upper bound is obtained for the multiplicities of such composition factors. Explicit descriptions are given of principal series modules for Lie algebras of rank . It can be seen that these graded versions of principal series representations are neither rigid nor Koszul modules.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno