Ir al contenido

Documat


The theory of minimal surfaces in $M \times \mathbb{R}$

  • Autores: William H. Meeks Árbol académico, Harold Rosenberg Árbol académico
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 80, Nº 4, 2005, págs. 811-858
  • Idioma: inglés
  • DOI: 10.4171/cmh/36
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we develop the theory of properly embedded minimal surfaces in $M \times \mathbb{R}$, where $M$ is a closed orientable Riemannian surface. We construct many examples of different topology and geometry. We establish several global results. The first of these theorems states that examples of bounded curvature have linear area growth, and so, are quasiperiodic. We then apply this theorem to study and classify the stable examples. We prove the topological result that every example has a finite number of ends. We apply the recent theory of Colding and Minicozzi to prove that examples of finite topology have bounded curvature. Also we prove the topological unicity of the embedding of some of these surfaces


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno