Ir al contenido

Documat


Spectral convergence of manifold pairs

  • Autores: Karsten Fissmer, Ursula Hamenstädt
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 80, Nº 4, 2005, págs. 725-754
  • Idioma: inglés
  • DOI: 10.4171/cmh/32
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let $(M_i,A_i)_i$ be pairs consisting of a complete Riemannian manifold $M_i$ and a nonempty closed subset $A_i$. Assume that the sequence $(M_i,A_i)_i$ converges in the Lipschitz topology to the pair $(M,A)$. We show that there is a number $c\geq 0$ which is determined by spectral properties of the ends of $M_i-A_i$ and such that the intersections with $[0,c)$ of the spectra of $M_i$ converge to the intersection with $[0,c)$ of the spectrum of $M$. This is used to construct manifolds with nontrivial essential spectrum and arbitrarily high multiplicities for an arbitrarily large number of eigenvalues below the essential spectrum.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno