Ir al contenido

Documat


Selberg's zeta function and the spectral geometry of geometrically finite hyperbolic surfaces

  • Autores: David Borthwick, Chris Judge, Peter A. Perry
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 80, Nº 3, 2005, págs. 483-515
  • Idioma: inglés
  • DOI: 10.4171/cmh/23
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For hyperbolic Riemann surfaces of finite geometry, we study Selberg's zeta function and its relation to the relative scattering phase and the resonances of the Laplacian. As an application we show that the conjugacy class of a finitely generated, torsion-free, discrete subgroup of $\SL(2,{\mathbb R})$ is determined by its trace spectrum up to finitely many possibilities, thus generalizing results of McKean [20] and Müller [23] to groups which are not necessarily cofinite


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno