We determine all distant-isomorphisms between projective lines over semilocal rings. In particular, for those semisimple rings that do not have a simple component which is isomorphic to a field, every distant isomorphism arises from a Jordan isomorphism of rings and a projectivity. We show this by virtue of a one-one correspondence linking the projective line over a semisimple ring with a Segre product of Grassmann spaces.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados