Ir al contenido

Documat


The ${\Cal K}(\pi ,1)$-conjecture for the affine braid groups

  • Autores: Ruth Charney, David Peifer
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 78, Nº 3, 2003, págs. 584-600
  • Idioma: inglés
  • DOI: 10.1007/s00014-003-0764-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The complement of the hyperplane arrangement associated to the (complexified) action of a finite, real reflection group on C^n is known to be a ${\Cal K}(\pi ,1)$ space for the corresponding Artin group $\Cal A$. A long-standing conjecture states that an analogous statement should hold for infinite reflection groups. In this paper we consider the case of a Euclidean reflection group of type $\tilde{\Cal A}_n$ and its associated Artin group, the affine braid group $\tilde{\Cal A}$. Using the fact that $\tilde{\Cal A}$ can be embedded as a subgroup of a finite type Artin group, we prove a number of conjectures about this group. In particular, we construct a finite, $n$-dimensional ${\Cal K}(\pi ,1)$-space for $\tilde{\Cal A}$, and use it to prove the ${\Cal K}(\pi ,1)$-conjecture for the associated hyperlane complement. In addition, we show that the affine braid groups are biautomatic and give an explicit biautomatic structure.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno