Ir al contenido

Documat


Dynamical properties of the space of Lorentzian metrics

  • Autores: Pierre Mounoud
  • Localización: Commentarii mathematici helvetici, ISSN 0010-2571, Vol. 78, Nº 3, 2003, págs. 463-485
  • Idioma: inglés
  • DOI: 10.1007/s00014-003-0767-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the mechanisms of the non properness of the action of the group of diffeomorphisms on the space of Lorentzian metrics of a compact manifold. In particular, we prove that nonproperness entails the presence of lightlike geodesic foliations of codimension 1. On the 2-torus, we prove that a metric with constant curvature along one of its lightlike foliation is actually flat. This allows us to show that the restriction of the action to the set of non-flat metrics is proper and that on the set of flat metrics of volume 1 the action is ergodic. Finally, we show that, contrarily to the Riemannian case, the space of metrics without isometries is not always open.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno