Ir al contenido

Documat


On generalized d'Alembert and Wilson functional equations

  • Autores: Elhoucien Elqorachi, Mohamed Akkouchi
  • Localización: Aequationes mathematicae, ISSN 0001-9054, Vol. 66, Nº. 3, 2003, págs. 241-256
  • Idioma: inglés
  • DOI: 10.1007/s00010-003-2682-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let G be a Hausdorff locally compact group and let $\sigma $ be a continuous involution of G. Let be a complex bounded measure on G. We are interested in the functional equations $ \int_{G}f(xty)d\mu(t) + \int_{G}f(xt\sigma(y))d\mu(t) = 2f(x)f(y) $ and $ \int_{G}f(xty)d\mu(t) + \int_{G}f(xt\sigma(y)d\mu(t) = 2f(x)g(y) $. The first one is considered as a generalization of the classical dAlembert functional equation, while the second one is considered as a generalization of Wilsons equation. We treat these equations in two settings: when f satisfies a condition of Kannappan type (see condition K() below) and in the particular case when is a generalized Gelfand measure. In both cases, the solutions will be described by means of -spherical functions and related functions. Also the matrix-valued case is considered.

      The results obtained in this paper are natural extensions of previous works concerning dAlemberts and Wilsons functional equations done in the abelian case.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno