Ir al contenido

Documat


Maximal abelian group actions on the ordered real line and their digital representations

  • Autores: Reinhard Winkler
  • Localización: Aequationes mathematicae, ISSN 0001-9054, Vol. 66, Nº. 3, 2003, págs. 204-231
  • Idioma: inglés
  • DOI: 10.1007/s00010-003-2691-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Investigations on commuting functions, done by many authors into diverse directions, lead to the search for maximal abelian groups of maps respecting a certain structure. Here we investigate the example of automorphisms of the linear ordering $ (\mathbb{R}, \leq) $. Nontrivial phenomena occur which might be typical for much more general situations. In our example one can use results from the theory of lattice ordered groups (in particular the Conrad-Harvey-Holland Theorem) to get representations by real valued functions. This leads to a set of invariants which, modulo a notion of equivalence which is rather well understood, classifies all maximal abelian subgroups of the automorphism group of $ (\mathbb{R}, \leq) $ up to conjugation.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno