Ir al contenido

Documat


Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow. Part I: study of the perturbed Ginzburg-Landau equation

  • Autores: Sylvia Serfaty
  • Localización: Journal of the European Mathematical Society, ISSN 1435-9855, Vol. 9, Nº 2, 2007, págs. 177-217
  • Idioma: inglés
  • DOI: 10.4171/jems/77
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study vortices for solutions of the perturbed Ginzburg-Landau equations $\Delta u+ \frac{1}{\ep2} u(1-|u|^2)=\a$ where $\a$ is estimated in $L2$. We prove upper bounds for the Ginzburg-Landau energy in terms of $\|\a\|_{L2}$, and obtain lower bounds for $\|\a\|_{L2}$ in term of the vortices when these form ``unbalanced clusters" where $\sum_i d_i2\neq \(\sum_i d_i\)2$. These results will serve in Part II of this paper \cite{part2} to provide estimates on the energy-dissipation rates for solutions of the Ginzburg-Landau heat-flow, which allow to study various phenomena occurring in this flow, among which vortex-collisions; allowing in particular to extend the dynamical law of vortices passed collisions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno