We prove an Ambrosetti-Prodi-type result for the periodic solutions of equation $\left(|u'|^{p-2}u')\right)' + f(u)u' + g(x,u) = t ,$ when $f$ is arbitrary and $g(x,u) \to +\infty$ or $g(x,u)\to - \infty$ when $|u| \to \infty.$ The proof uses upper and lower solutions and Leray-Schauder degree.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados