Ir al contenido

Documat


Dual mixed volumes and the slicing problem

  • Autores: Emanuel Milman
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 207, Nº 2, 2006, págs. 566-598
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2005.09.008
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We develop a technique using dual mixed-volumes to study the isotropic constants of some classes of spaces. In particular, we recover, strengthen and generalize results of Ball and Junge concerning the isotropic constants of subspaces and quotients of Lp and related spaces. An extension of these results to negative values of p is also obtained, using generalized intersection-bodies. In particular, we show that the isotropic constant of a convex body which is contained in an intersection-body is bounded (up to a constant) by the ratio between the latter's mean-radius and the former's volume-radius. We also show how type or cotype 2 may be used to easily prove inequalities on any isotropic measure.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno