Ir al contenido

Documat


Tilting theory and cluster combinatorics

  • Autores: Aslak Bakke Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, Gordana Todorov
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 204, Nº 2, 2006, págs. 572-618
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2005.06.003
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We introduce a new category , which we call the cluster category, obtained as a quotient of the bounded derived category of the module category of a finite-dimensional hereditary algebra H over a field. We show that, in the simply laced Dynkin case, can be regarded as a natural model for the combinatorics of the corresponding Fomin¿Zelevinsky cluster algebra. In this model, the tilting objects correspond to the clusters of Fomin¿Zelevinsky. Using approximation theory, we investigate the tilting theory of , showing that it is more regular than that of the module category itself, and demonstrating an interesting link with the classification of self-injective algebras of finite representation type. This investigation also enables us to conjecture a generalisation of APR-tilting.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno