We give a local proof of an index theorem for a Dirac-type operator that is invariant with respect to the action of a foliation groupoid G. If M denotes the space of units of G then the input is a G-equivariant fiber bundle P?M along with a G-invariant fiberwise Dirac-type operator D on P. The index theorem is a formula for the pairing of the index of D, as an element of a certain K-theory group, with a closed graded trace on a certain noncommutative de Rham algebra associated to G. The proof is by means of superconnections in the framework of noncommutative geometry.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados