Ir al contenido

Documat


Local index theory over foliation groupoids

  • Autores: Alexander Gorokhovsky, John Lott
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 204, Nº 2, 2006, págs. 413-447
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2005.05.018
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We give a local proof of an index theorem for a Dirac-type operator that is invariant with respect to the action of a foliation groupoid G. If M denotes the space of units of G then the input is a G-equivariant fiber bundle P?M along with a G-invariant fiberwise Dirac-type operator D on P. The index theorem is a formula for the pairing of the index of D, as an element of a certain K-theory group, with a closed graded trace on a certain noncommutative de Rham algebra associated to G. The proof is by means of superconnections in the framework of noncommutative geometry.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno