Ir al contenido

Documat


Schubert induction

  • Autores: Ravi Vakil
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 164, Nº 2, 2006, págs. 489-512
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We describe a Schubert induction theorem, a tool for analyzing intersections on a Grassmannian over an arbitrary base ring. The key ingredient in the proof is the Geometric Littlewood-Richardson rule of [V2]. As applications, we show that all Schubert problems for all Grassmannians are enumerative over the real numbers, and sufficiently large finite fields. We prove a generic smoothness theorem as a substitute for the Kleiman-Bertini theorem in positive characteristic. We compute the monodromy groups of many Schubert problems, and give some surprising examples where the monodromy group is much smaller than the full symmetric group.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno