Ir al contenido

Documat


Moduli space of principal sheaves over projective varieties

  • Autores: Tomás Gómez, Ignacio Sols Lucia Árbol académico
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 161, Nº 2, 2005, págs. 1037-1092
  • Idioma: inglés
  • DOI: 10.4007/annals.2005.161.1037
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan¿fs notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a projective variety X is a triple (P,E,¿Õ), where E is a torsion free sheaf on X, P is a principal G-bundle on the open set U where E is locally free and ¿Õ is an isomorphism between E|U and the vector bundle associated to P by the adjoint representation. We say it is (semi)stable if all filtrations E. of E as sheaf of (Killing) orthogonal algebras, i.e. filtrations with E¿Ûi = E.i.1 and [Ei,Ej ] ¿¿ E ¿É¿É i+j , have (PEi rkE . PE rkEi) () 0, where PEi is the Hilbert polynomial of Ei. After fixing the Chern classes of E and of the line bundles associated to the principal bundle P and characters of G, we obtain a projective moduli space of semistable principal G-sheaves. We prove that, in case dimX = 1, our notion of (semi)stability is equivalent to Ramanathan¿fs notion.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno