Ir al contenido

Documat


Lattice point problems and distribution of values of quadratic forms

  • Autores: Friedrich Götze, V. Bentkus
  • Localización: Annals of mathematics, ISSN 0003-486X, Vol. 150, Nº 3, 1999, págs. 977-1027
  • Idioma: inglés
  • DOI: 10.2307/121060
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For d-dimensional irrational ellipsoids E with d ¡Ý 9 we show that the number of lattice points in rE is approximated by the volume of rE, as r tends to infinity, up to an error of order o(rd.2). The estimate refines an earlier authors¡¯ bound of order O(rd.2) which holds for arbitrary ellipsoids, and is optimal for rational ellipsoids. As an application we prove a conjecture of Davenport and Lewis that the gaps between successive values, say s < n(s), s, n(s) ¡Ê Q[Zd], of a positive definite irrational quadratic form Q[x], x ¡Ê Rd, are shrinking, i.e., that n(s).s ¡ú 0 as s ¡ú ¡Þ, for d ¡Ý 9. For comparison note that sups(n(s) . s) < ¡Þand infs(n(s).s) > 0, for rational Q[x] and d ¡Ý 5. As a corollary we derive Oppenheim¡¯s conjecture for indefinite irrational quadratic forms, i.e., the set Q[Zd] is dense in R, for d ¡Ý 9, which was proved for d ¡Ý 3 by G. Margulis [Mar1] in 1986 using other methods. Finally, we provide explicit bounds for errors in terms of certain characteristics of trigonometric sums.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno