Ir al contenido

Documat


On Tauberian and co-Tauberian operators

  • Autores: Vladimir P. Fonf Árbol académico, S. Dutta
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 21, Nº 1, 2006, págs. 27-40
  • Idioma: inglés
  • Títulos paralelos:
    • Sobre los operadores tauberianos y cotauberianos
  • Enlaces
  • Resumen
    • We show that a Banach space X has an infinite dimensional reflexive subspace (quotient) if and only if there exist a Banach space Z and a nonisomorphic one-to-one (dense range) Tauberian (co-Tauberian) operator form X to Z (Z to X). We also give necessary and sufficient condition for the existence of a Tauberian operator from a separable Banach space to c0 which in turn generalizes a result of Johnson and Rosenthal. Another application of our result shows that if X** is separable, then there exists a renorming of X for which, X is essentially the only subspace contained in the set of norm attaining functionals on X*


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno