Ir al contenido

Documat


A Dirichlet series expansion for the p-adic zeta-function

  • Autores: Daniel Delbourgo
  • Localización: Journal of the Australian Mathematical Society, ISSN 1446-7887, Vol. 81, Nº 2, 2006, págs. 215-224
  • Idioma: inglés
  • DOI: 10.1017/s1446788700015846
  • Enlaces
  • Resumen
    • We prove that the p-adic zeta-function constructed by Kubota and Leopoldt has the Dirichlet series expansion \[ \zeta_p(k,\omega^{1-k}) = \frac{1}{(2-{4}\cdot{2^{-k}})} \sum_{n=1}^{\infty} \sum_{\substack{m=p^{n-1}\\ p\nmid m}}^{p^n} \frac{(-1)^{m+1}}{m^k} \quad\text{at all }\ k\in \mathbb Z,\] where the convergence of the first summation is for the p-adic topology. The proof of this formula relates the values of $\zeta_p(-s,\omega^{1+\beta})$ for $s\in\mathbb Z_p$, with a branch of the `$s^{\text{th}}$-fractional derivative' of a suitable generating function.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno