Ir al contenido

Documat


Cubic symmetric graphs of order twice an odd prime-power

  • Autores: Yan-Quan Feng, Jin Ho Kwak
  • Localización: Journal of the Australian Mathematical Society, ISSN 1446-7887, Vol. 81, Nº 2, 2006, págs. 153-164
  • Idioma: inglés
  • DOI: 10.1017/s1446788700015792
  • Enlaces
  • Resumen
    • An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. For a connected cubic symmetric graph X of order 2pn for an odd prime p we show that if $p\not=5,7$ then every Sylow p-subgroup of the full automorphism group Aut(X) of X is normal, and if $p\not=3$ then every s-regular subgroup of Aut(X) having a normal Sylow p-subgroup contains an (s ¿ 1)-regular subgroup for each $1\leq s\leq 5$. As an application, we show that every connected cubic symmetric graph of order 2pn is a Cayley graph if p > 5 and we classify the s-regular cubic graphs of order 2p2 for each $1\leq s\leq 5$ and each prime p, as a continuation of the authors' classification of 1-regular cubic graphs of order 2p2. The same classification of those of order 2p is also done.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno