Ir al contenido

Documat


Molecules and linearly ordered ideals of MV-algebras

  • Autores: C. S. Hoo
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 41, Nº 2, 1997, págs. 455-465
  • Idioma: inglés
  • DOI: 10.5565/publmat_41297_10
  • Títulos paralelos:
    • Moléculas e ideales ordenados linealmente de álgebras MV
  • Enlaces
  • Resumen
    • We show that an ideal $I$ of an $MV$-algebra $A$ is linearly ordered if and only if every non-zero element of $I$ is a molecule. The set of molecules of $A$ is contained in $\operatorname{Inf}(A)\cup B_2(A)$ where $B_2(A)$ is the set of all elements $x\in A$ such that $2x$ is idempotent. It is shown that $I\ne \{0\}$ is weakly essential if and only if $B^\perp \subset B(A).$ Connections are shown among the classes of ideals that have various combinations of the properties of being implicative, essential, weakly essential, maximal or prime.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno