Ir al contenido

Documat


Planar vector field versions of Carathéodory's and Loewner's conjectures

  • Autores: Carlos Gutiérrez Árbol académico, Federico Sánchez-Bringas Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 41, Nº 1, 1997 (Ejemplar dedicado a: Proceedings of the Symposium on Planar Vector Fields), págs. 169-179
  • Idioma: inglés
  • DOI: 10.5565/publmat_41197_10
  • Títulos paralelos:
    • Versiones de campo vectorial plano de las conjeturas de Carathéodory y Loewner
  • Enlaces
  • Resumen
    • Let $r = 3, 4, \ldots, \infty, \omega$. The $C^r$-Carathéodory's Conjecture states that every $C^r$ convex embedding of a 2-sphere into ${\Bbb R}^{3}$ must have at least two umbilics. The $C^r$-Loewner's conjecture (stronger than the one of Carathéodory) states that there are no umbilics of index bigger than one. We show that these two conjectures are equivalent to others about planar vector fields. For instance, if $r\ne \omega$, $C^r$-Carathéodory's Conjecture is equivalent to the following one:

      Let $\rho >0$ and $\beta : U \subset \Bbb R^2 \to \Bbb R$, be of class $C^r$, where $U$ is a neighborhood of the compact disc $D(0, \rho) \subset \Bbb R^2$ of radius $\rho$ centered at $0$. If $\beta$ restricted to a neighborhood of the circle $\partial D(0, \rho)$ has the form $\beta(x, y) = (a x^2 + b y^2)/( x^2 + y^2)$, where $a < b < 0$, then the vector field (defined in $U$) that takes $(x, y)$ to $(\beta_{xx}(x,y) - \beta_{yy}(x,y), 2 \beta_{xy}(x,y) )$ has at least two singularities in $D(0, \rho)$.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno