Ir al contenido

Documat


Uniqueness and existence of solutions in the BVt (Q) space to a doubly nonlinear parabolic problem

  • Autores: Juan Francisco Padial Árbol académico, Jesús Ildefonso Díaz Díaz Árbol académico
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 40, Nº 2, 1996, págs. 527-560
  • Idioma: inglés
  • DOI: 10.5565/publmat_40296_18
  • Títulos paralelos:
    • Unicidad y existencia de la solución en el espacio BVt(Q) de un problema parabólico doblemente no lineal
  • Enlaces
  • Resumen
    • In this paper we present some results on the uniqueness and existence of a class of weak solutions (the so called BV solutions) of the Cauchy-Dirichlet problem associated to the doubly nonlinear diffusion equation $$ b(u)_t-\operatorname{div}(|\nabla u-k(b(u))\boldkey{e}|^{p-2}(\nabla u-k(b(u))\boldkey{e})) +g(x,u) = f(t,x).

      $$ This problem arises in the study of some turbulent regimes: flows of incompressible turbulent fluids through porous media, gases flowing in pipelines, etc. The solvability of this problem is established in the $BV_t(Q)$ space. We prove some comparison properties (implying uniqueness) when the set of jumping points of the BV solution has $N$-dimensional null measure and suitable additional conditions as, for instance, $b^{-1}$ locally Lipschitz. The existence of this type of weak solution is based on suitable uniform estimates of the BV norm of an approximated solution.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno