Ir al contenido

Documat


Convexity theories 0 fin: foundations

  • Autores: Heinrich Kleisli, Helmut Röhrl
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 40, Nº 2, 1996, págs. 469-496
  • Idioma: inglés
  • DOI: 10.5565/publmat_40296_16
  • Títulos paralelos:
    • Teorías de convexidad 0 fin: fundamentos
  • Enlaces
  • Resumen
    • In this paper we study big convexity theories, that is convexity theories that are not necessarily bounded. As in the bounded case (see \cite{4}) such a convexity theory $\Gamma$ gives rise to the category $\Gamma{\Cal C}$ of (left) $\Gamma$-convex modules. This is an equationally presentable category, and we prove that it is indeed an algebraic category over ${\Cal S}et$. We also introduce the category $\Gamma{\Cal A}lg$ of $\Gamma$-convex algebras and show that the category ${\Cal F}rm$ of frames is isomorphic to the category of associative, commutative, idempotent $\Bbb D^U$-convex algebras satisfying additional conditions, where $\Bbb D$ is the two-element semiring that is not a ring. Finally a classification of the convexity theories over $\Bbb D$ and a description of the categories of their convex modules is given.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno