Ir al contenido

Documat


Existence and uniqueness of solutions for a degenerate quasilinear parabolic problem

  • Autores: Maurizio Badii
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 38, Nº 2, 1994, págs. 327-352
  • Idioma: inglés
  • DOI: 10.5565/publmat_38294_05
  • Títulos paralelos:
    • Existencia y unicidad de soluciones para un problema parabólico casi lineal degenerado
  • Enlaces
  • Resumen
    • We consider the following quasilinear parabolic equation of degenerate type with convection term $u_t=\varphi (u)_{xx}+b(u)_x$ in $(-L,0)\times (0,T)$. We solve the associate initial-boundary data problem, with nonlinear flux conditions. This problem, describes the evaporation of an incompressible fluid from a homogeneous porous media. The nonlinear condition in $x=0$, means that the flow of fluid leaving the porous media depends on variable meteorological conditions and in a nonlinear manner on $u$. In $x=-L$, we have an impervious boundary. For a sufficiently smooth initial data, one proves the existence and uniqueness of the global strong solution in the class of bounded variation functions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno