Ir al contenido

Documat


Diffeomorphisms of $\Bbb R^n$ with oscillatory jacobians

  • Autores: Nelson M. Kuhl, Waldyr M. Oliva, Luiz T. Magalhaes
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 37, Nº 2, 1993, págs. 255-269
  • Idioma: inglés
  • DOI: 10.5565/publmat_37293_02
  • Títulos paralelos:
    • Difeomorfismos de Rn con jacobianos oscilatorios
  • Enlaces
  • Resumen
    • The paper presents, mainly, two results: a new proof of the spectral properties of oscillatory matrices and a transversality theorem for diffeomorphisms of Rn with oscillatory jacobian at every point and such that NM(f(x) - f(y)) = NM(x - y) for all elements x,y Î Rn, where NM(x) - 1 denotes the maximum number of sign changes in the components zi of z Î Rn, where all zi are non zero and z varies in a small neighborhood of x. An application to a semiimplicit discretization of the scalar heat equation with Dirichlet boundary conditions is also made.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno