Ir al contenido

Documat


Enveloppes polynomiales de variétés réelles dans $\Bbb C^2$

  • Autores: Boris Gourlay
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 37, Nº 1, 1993, págs. 225-238
  • Idioma: francés
  • DOI: 10.5565/publmat_37193_15
  • Títulos paralelos:
    • Envolventes polinomiales de variedades reales en C2
    • Polynomial hulls of real manifolds in C2
  • Enlaces
  • Resumen
    • We present here three examples concerning polynomial hulls of some manifolds in C2.

      1. Some real surfaces with equation w = P (z,z') + G(z) where P is a homogeneous polynomial of degree n and G(z) = o(|z|n) at 0 which are locally polynomially convex at 0.

      2. Some real surfaces MF with equation w = zn+kz'n + F(z,z') such that the hull of Mf n B'(0,1) contains a neighbourhood of 0.

      3. A contable union of totally real planes (Pj) such that B'(0,1) n (ÈjÎN Pj) is polynomially convex.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno