Ir al contenido

Documat


The p-period of an infinite group

  • Autores: Yining Xia
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 36, Nº 1, 1992, págs. 241-250
  • Idioma: inglés
  • Títulos paralelos:
    • El periodo-p de un grupo infinito
  • Enlaces
  • Resumen
    • For G a group of finite virtual cohomological dimension and a prime p, the p-period of G is defined to be the least positive integer d such that Farrell cohomology groups Hi(G; M) and Hi+d(G; M) have naturally isomorphic ZG modules M.

      We generalize a result of Swan on the p-period of a finite p-periodic group to a p-periodic infinite group, i.e., we prove that the p-period of a p-periodic group G of finite vcd is 2LCM(|N(áxñ) / C(áxñ)|) if the G has a finite quotient whose a p-Sylow subgroup is elementary abelian or cyclic, and the kernel is torsion free, where N(-) and C(-) denote normalizer and centralizer, áxñ ranges over all conjugacy classes of Z/p subgroups. We apply this result to the computation of the p-period of a p-periodic mapping class group. Also, we give an example to illustrate this formula is false without our assumption.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno