Ir al contenido

Documat


Finsler metrics with properties of the Kobayashi metric on convex domains

  • Autores: Myung-Yull Pang
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 36, Nº 1, 1992, págs. 131-155
  • Idioma: inglés
  • DOI: 10.5565/publmat_36192_10
  • Títulos paralelos:
    • Métricas de Finsler con propiedades de la métrica de Kobayashi en dominios convexos
  • Enlaces
  • Resumen
    • The structure of complex Finsler manifolds is studied when the Finsler metric has the property of the Kobayashi metric on convex domains: (real) geodesics locally extend to complex curves (extremal disks). It is shown that this property of the Finsler metric induces a complex foliation of the cotangent space closely related to geodesics. Each geodesic of the metric is then shown to have a unique extension to a maximal totally geodesic complex curve S which has properties of extremal disks. Under the additional conditions that the metric is complete and the holomorphic sectional curvature is -4, S coincides with an extremal disk and a theorem of Faran is recovered: the Finsler metric coincides with the Kobayashi metric.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno