Ir al contenido

Documat


Theoretical aspects of wave propagation for Biot's consolidation problem

  • Autores: Hélène Barucq Árbol académico, Monique Madaune-Tort Árbol académico, P. Saint-Macary
  • Localización: VIII Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques / coord. por Manuel Pedro Palacios Latasa Árbol académico, David Trujillo, Juan José Torrens Iñigo Árbol académico, Monique Madaune-Tort Árbol académico, María Cruz López de Silanes Busto Árbol académico, Gerardo Sanz Sáiz Árbol académico, 2003, ISBN 84-7733-720-9, págs. 449-458
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We consider a coupled system of mixed hyperbolic-parabolic type which describes the Biot consolidation model in poro-elasticity as well as a coupled quasi-static problem in thermoelasticity. In this work, we intend to develop the existence-uniqueness theory for the multi-dimensional systems in the linear case using classical functional arguments in the Sobolev background. For the consolidation model, our approach involves Galerkin approximations to establish the existence of a solution to the problem while we prove that the thermo-elastic and the quasi-static systems are limit cases of the consolidation model. The treatment of the uniqueness is based on an energy inequality even if, in the quasi-static system, it requires some adjustments because of a lack of regularity.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno