Ir al contenido

Documat


On d-pseudo-orthogonality of the Sheffer systems associated to a convolution semigroup

  • Autores: Célestin C. Kokonendji Árbol académico
  • Localización: VIII Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques / coord. por Manuel Pedro Palacios Latasa Árbol académico, David Trujillo, Juan José Torrens Iñigo Árbol académico, Monique Madaune-Tort Árbol académico, María Cruz López de Silanes Busto Árbol académico, Gerardo Sanz Sáiz Árbol académico, 2003, ISBN 84-7733-720-9, págs. 355-363
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We investigate which Sheffer polynomials can be associated to a convolution semigroup of probability measures, usually induced by a stochastic process with stationary and independent increments. From a recent notion of d-pseudo-orthogonality (d ? {2, 3, ? ? ?}), we characterize the associated d-pseudo-orthogonal polynomials by the class of generating probability measures, which belongs to the natural exponential family with polynomial variance functions of exact degree 2d - 1. This extends some results of (classical) orthogonality; in particular, some new sets of martingales are then pointed out. For each integer d = 2 we completely illustrate polynomials with (2d-1)-term recurrence relation for the families of positive stable processes.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno