Ir al contenido

Documat


On the frequentist and Bayesian approaches to hypothesis testing

  • Autores: Francisco Javier Girón González-Torre Árbol académico, Elías Moreno Bas Árbol académico
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 30, Nº. 1, 2006, págs. 3-54
  • Idioma: inglés
  • Títulos paralelos:
    • Sobre los enfoques bayesiano y frecuentista en el contraste de hipótesis.
  • Enlaces
  • Resumen
    • Hypothesis testing is a model selection problem for which the solution proposed by the two main statistical streams of thought, frequentists and Bayesians, substantially differ. One may think that this fact might be due to the prior chosen in the Bayesian analysis and that a convenient prior selection may reconcile both approaches. However, the Bayesian robustness viewpoint has shown that, in general, this is not so and hence a profound disagreement between both approaches exists. this paper we briefly revise the basic aspects of hypothesis testing for both the frequentist and Bayesian procedures and discuss the variable selection problem in normal linear regression for which the discrepancies are more apparent. Illustrations on simulated and real data are given.

  • Referencias bibliográficas
    • Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag.
    • Berger, J.O. (1994). An overview of robust Bayesian analysis (with discussion). Test, 3, 5-124.
    • Berger, J.O. and Bernardo, J.M. (1992). On the development of the reference prior method. In Bayesian Statistics 4. J.M. Bernardo, J.O. Berger,...
    • Berger, J.O. and Mortera, J. (1999). Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association,...
    • Berger, J.O. and Pericchi, L.R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical...
    • Berger, J.O. and Sellke, T. (1987). Testing a point null hypothesis: the irreconcilability of p-values and evidence (with discussion). Journal...
    • Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory, New York: Wiley.
    • Box, G.E.P. and Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. Reading, MA: AddisonWesley.
    • Cano, J.A., Kessler, M. and Moreno, E. (2004). On intrinsic priors for nonnested models. Test, 13, 445- 463.
    • Casella, G. and Berger, R.L. (1987). Reconciling Bayesian and frequentist evidence in the one-sided testing problem. Journal of the American...
    • Casella, G. and Berger, R.L. (1990). Statistical Inference. Belmont: Wadsworth.
    • Casella, G. and Moreno, E. (2005). Intrinsic meta analysis of contingency tables, Statistic in Medicine, 24, 583-604.
    • Casella, G. and Moreno, E. (2005). Objective Bayesian variable selection. Journal of the American Statistical Association (to appear).
    • Fisher, R.A. (1936). The fiducial arguments in statistical inference. Annals of Eugenics, 6, 391-422.
    • Girón, F.J., Martı́nez, L. and Imlahi, L. (1999). A characterization of the Behrens-Fisher distribution with applications to Bayesian...
    • Girón, F., Martı́nez, L., Moreno, E. and Torres, F. (2003). Bayesian analysis of matched pairs in the presence of covariates. In Bayesian...
    • Girón, F.J., Martı́nez, L., and Moreno, E. (2003). Bayesian analysis of matched pairs. Journal of Statistical Planning and Inference,...
    • Girón, F.J., Martı́nez, M.L., Moreno, E. and Torres, F. (2004). Objective testing procedures in linear models. Calibration of the p-values....
    • Girón, F.J., Moreno, E. and Martı́nez, L. (2005). An objective Bayesian procedure for variable selection in regression. In Advances on...
    • Jeffreys, H. (1961). Theory of Probability. London: Oxford University Press.
    • Lempers, F.B. (1971). Posterior Probabilities of Alternative Linear Models. Rotterdam: Rotterdam University Press.
    • Lehman, E. (1986). Testing Statistical Hypotheses, (second edition). New York: Wiley.
    • Lindley, D.V. (1970). An Introduction to Probability and Statistics from a Bayesian Viewpoint (Vol. 2). Cambridge: Cambridge University Press.
    • Miller, A.J. (2002). Subset Selection in Regression. 2nd edition. London: Chapman and Hall.
    • Moreno, E. (1997). Bayes Factor for Intrinsic and Fractional Priors in Nested Models: Bayesian Robustness. IMS Lectures Notes-Monograph Series,...
    • Moreno, E. (2005). Objective Bayesian analysis for one-sided testing, Test, 14, 181-198.
    • Moreno, E., Bertolino, F. and Racugno, W. (1998). An intrinsic limiting procedure for model selection and hypotheses testing. Journal of the...
    • Moreno, E., Bertolino, F. and Racugno, W. (1999). Default Bayesian analysis of the Behrens-Fisher problem. Journal of Statistical Planning...
    • Moreno, E., Bertolino, F. and Racugno, W. (2000). Bayesian model selection approach to analysis of variance under heterocedasticity, Journal...
    • Moreno, E., Bertolino, F. and Racugno, W. (2003). Bayesian inference under partial prior information, Scandinavian Journal of Statistics,...
    • Moreno, E. and Cano J.A. (1989). Testing a point null hypothesis: asymptotic robust Bayesian analysis with respect to the priors given on...
    • Moreno, E. and Girón, F.J. (2005a). Consistency of Bayes factors for linear models, Comptes rendus de l’Académie des sciences de Paris,...
    • Moreno, E. and Girón, F.J. (2005b). Comparison of Bayesian objective procedures for variable selection in regression. Submitted.
    • Moreno, E., Girón, F.J., and Torres, F. (2003). Intrinsic priors for hypothesis testing in normal regression models. Revista de la Real...
    • Moreno, E. and Liseo, B. (2003). A default Bayesian test for the number of components of a mixture. Journal of Statistical Planning and Inference,...
    • Moreno, E., Torres, F., and Casella, G. (2005). Testing the equality of regression coefficients in heteroscedastic normal regression models....
    • O’Hagan, A. (1995). Fractional Bayes factor for model comparison (with discussion). Journal of the Royal Statistical Society Series B, 57,...
    • O’Hagan, A. and Forster, J. (2004). Bayesian Inference. Kendall’s Advances Theory of Statistics (Vol. 2B). London: Arnold.
    • Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press: Oxford.
    • San Martini, A. and Spezaferri, F. (1984). A predictive model selection criterion. Journal of the Royal Statistical Sociery, Series B, 46,...
    • Sellke, T., Bayarri, M.J. and Berger, J. (2001). Calibration of p-values for testing precise null hypotheses. The American Statistician, 55,...
    • Wald, A. (1955). Testing the difference between the means of two normal populations with unknown standard deviations. In Selected papers in...
    • Wilks, S.S. (1962). Mathematical Statistics. New York: Wiley
    • Welch, B.L. (1951). On the comparison of several means values: an alternative approach. Biometrika, 38, 330-336.
    • Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In Bayesian Inference and...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno