Ir al contenido

Documat


Lp Regularity of the dirichlet problem for elliptic equations with singular drift

  • Autores: Cristian Rios
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 50, Nº 2, 2006, págs. 475-507
  • Idioma: español
  • DOI: 10.5565/publmat_50206_11
  • Enlaces
  • Resumen
    • Let L0 and L1 be two elliptic operators in nondivergence form, with coefficients Aℓ and drift terms bℓ, ℓ = 0, 1 satisfying sup |Y −X|≤ δ(X) 2 |A0 (Y ) − A1 (Y )| 2 + δ (X) 2 |b0 (Y ) − b1 (Y )| 2 δ (X) dX is a Carleson measure in a Lipschitz domain Ω ⊂ Rn+1 , n ≥ 1, (here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0 ∈ A∞, then dωL1 ∈ A∞. This is an analog to Theorem 2.17 in [8] for divergence form operators. As an application of this, a new approximation argument and known results we are able to extend the results in [10] for divergence form operators while obtaining totally new results for nondivergence form operators. The theorems are sharp in all cases.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno