Ir al contenido

Documat


On the Vanishing Set of Inverse Integrating Factors

  • Autores: Hector J. Giacomini Árbol académico, Lucio R. Berrone
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 1, Nº 2, 2000, págs. 211-230
  • Idioma: inglés
  • DOI: 10.1007/bf02969478
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study in this paper $\mathcal{C}^{1}$ two-dimensional dynamical systems of the form $\; \stackrel{.}{x} = P(x,y),\; \;\stackrel{.}{y} = Q(x,y).$ We analyse the properties of the vanishing set of inverse integrating factors V, which are defined as $\mathcal{C}^{1}$ solutions of the equation \[ P\frac{\partial V}{\partial x}+Q\frac{\partial V}{\partial y}=V\limfunc{div}(P,Q) \nonumber. \] Isolated zeros of V are studied and their relationships with critical points of the system is evidenced. We show how the knowledge of an inverse integrating factor in a neighborhood of a critical point provides useful information on the local dynamics of the system. A general result is proved on vanishing of V on the separatrix curves of a saddle-point. Finally, the problem of vanishing on graphs of inverse integrating factors is discussed. It is shown that a bounded graph is contained in the vanishing set of an inverse integrating factor when the critical points of the graph are non-degenerate.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno