Ir al contenido

Documat


Likelihood for random-effect models

  • Autores: Youngjo Lee, John A. Nelder
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 29, Nº. 2, 2005, págs. 141-182
  • Idioma: inglés
  • Títulos paralelos:
    • Verosimilitud para modelos de efectos aleatorios (con discusión).
  • Enlaces
  • Resumen
    • HolaFor inferences from random-effect models Lee and Nelder (1996) proposed to use hierarchical likelihood (h-likelihood). It allows inference from models that may include both fixed and random parameters. Because of the presence of unobserved random variables h-likelihood is not a likelihood in the Fisherian sense. The Fisher likelihood framework has advantages such as generality of application, statistical and computational efficiency. We introduce an extended likelihood framework and discuss why it is a proper extension, maintaining the advantages of the original likelihood framework.

      The new framework allows likelihood inferences to be drawn for a much wider class of models.

      MSC: 62F10 62F15 62F30 Keywords: generalized linear models, hierarchical models, h-likelihood HolaPer a la infer`encia en models amb efectes aleatoris Lee i Nelder (1996) proposaren utilitzar la versemblanc¿a jer`arquica (h-versemblanc¿a). Aquesta permet la infer`encia en models que presenten a la vegada par`ametres fixos i aleatoris. Per la pres`encia de variables aleat`ories no observables, la h-versemblanc¿a no ¿es una versemblanc¿a en el sentit Fisheri`a. El marc de refer`encia de la versemblanc¿a de Fisher t¿e avantatges com la generalitat d¿aplicaci¿o, l¿efici`encia estad¿ýstica i computacional. Nosaltres introdu¿ým un marc de versemblanc¿a ampliat i discutim perqu`e ¿es una extensi¿o apropiada, mantenint els avantatges del marc de la versemblanc¿a original. El nou marc de refer`encia permet fer infer`encies versemblants per a una classe m¿es `amplia de models.

      Paraules clau: models lineals generalitzats, models jer`arquics, h-versemblances

  • Referencias bibliográficas
    • Barndorff-Nielsen, O. E. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343-365.
    • Barndorff-Nielsen, O. E. and Cox, D. R. (1996). Prediction and asymptotics. Bernoulli, 2, 319-340.
    • Bayarri, M. J., DeGroot, M. H. and Kadane, J. B. (1988). What is the likelihood function? (with discussion). Statistical Decision Theory and...
    • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, New York: Springer-Verlag.
    • Berger, J. O., and Wolpert, R. (1984). The Likelihood Principle. Hayward: Institute of Mathematical Statistics Monograph Series.
    • Birnbaum, A. (1962). On the foundations of statistical inference (with discussion). J. Am. Statist. Ass., 57, 269-306.
    • Bjørnstad, J. F. (1990). Predictive likelihood principle: a review (with discussion). Statist. Sci., 5, 242-265.
    • Bjørnstad, J. F. (1996). On the generalization of the likelihood function and likelihood principle. J. Am. Statist. Ass., 91, 791-806.
    • Box, M. J., Draper, N. R. and Hunter, W. G. (1970). Missing values in multi-response nonlinear data fitting. Technometrics, 12, 613-620.
    • Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. J. Am. Statist. Ass., 88, 9-25.
    • Butler, R. W. (1986). Predictive likelihood inference with applications (with discussion). J. R. Statist. Soc. B, 48, 1-38.
    • Butler, R. W. (1990). Comment on “Predictive likelihood inference with applications” by Bjørnstad. Statist. Sci., 5, 255-259.
    • Carlin, B. P. and Louis, T. A. (2000). Bayesian and Empirical Bayesian Methods for Data Analysis. London: Chapman and Hall.
    • Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional inference. J. R. Statist. Soc. B, 32, 1-18.
    • Crouch, E. A. C. and Spiegelman, D. (1990). The evaluation of integrals of the form +∞ −∞ f(t) exp(−t 2)dt: application to logistic-normal...
    • Davison, A. C. (1986). Approximate predictive likelihood. Biometrika, 73, 323-332.
    • Dempster, A. P. N., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc....
    • Drum, M. L. and McCullagh, P. (1993). REML estimation with exact covariance in the logistic mixed model. Biometrics, 49, 677-689.
    • Edwards, A. W. F. (1972). Likelihood. Cambridge: Cambridge University Press.
    • Efron, B. (2003). A conversation with good friends. Statist. Sci., 18, 268-281.
    • Fisher, R. A. (1921). On the probable error of a coefficient of correlation deduced from a small sample. Metron, 1, 3-32.
    • Ha, I. D. and Lee, Y. (2005a). Multilevel mixed linear models for survival data. Lifetime Data Analysis, 11, 131-142.
    • Ha, I. D. and Lee, Y. (2005b). Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty...
    • Ha, I. D., Lee, Y. and Song, J. K. (2001). Hierarchical likelihood approach for frailty models. Biometrika, 88, 233-243.
    • Ha, I. D., Lee, Y. and Song, J. K. (2002). Hierarchical likelihood approach for mixed linear models with censored data. Lifetime Data Analysis,...
    • Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection models. Biometrics, 31, 423-447.
    • Hinkley, D. V. (1979). Predictive likelihood. Ann. Statist., 7, 718-728. Corr 8, 694.
    • Karim, M. R. and Zeger, S. L. (1992). Generalized linear models with random effects; salamander mating revisited. Biometrics, 48, 681-694.
    • Lee, Y. and Nelder, J. A. (1996). Hierarchical generalized linear models (with discussion). J. R. Statist. Soc. B, 58, 619-678.
    • Lee, Y. and Nelder, J. A. (2001a). Hierarchical generalized linear models: A synthesis of generalised linear models, randomeffect model and...
    • Lee, Y. and Nelder, J. A. (2001b). Modelling and analysing correlated non-normal data, Statistical Modelling, 1, 3-16.
    • Lee, Y. and Nelder, J. A. (2004). Conditional and marginal models: another view (with discussion). Statist. Sci., 19, 219-238.
    • Lee, Y. and Nelder, J. A. (2005). Double hierarchical generalized linear models (with discussion). to appear at Appl. Statist.
    • Lin, X. and Breslow, N. E. (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Statist....
    • Lindley, D. V. and Smith, A. F. M. (1972). Bayesian estimates for the linear model (with discussion). J. R. Statist. Soc. B, 34, 1-41.
    • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. New York: John Wiley.
    • Mathiasen, P. E. (1979). Prediction functions. Scand. J. Statist., 6, 1-21.
    • Noh, M. and Lee, Y. (2004). REML estimation for binary data in GLMMs. Manuscript prepared for publication.
    • Patterson, H. and Thompson, R. (1971). Recovery of interblock information when block sizes are unequal. Biometrika, 58, 545-554.
    • Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference using Likelihood. Oxford: Clarendon Press.
    • Pearson, K. (1920). The fundamental problems of practical ststistics. Biometrika, 13, 1-16.
    • Savage, L. J. (1976). On rereading R. A. Fisher (with discussion). Ann. Statist., 4, 441-500.
    • Schall, R. (1991). Estimation in generalised linear models with random effects. Biometrika, 78, 719-727.
    • Searle, S. R., Casella, G. and McCulloch, C. E. (1992). Variance Components. New York: John Wiley and Sons.
    • Shun, Z. (1997). Another look at the salamander mating data: a modified Laplace approximation approach. J. Am. Statist. Ass., 92, 341-349.
    • Shun, Z. and McCullagh, P. (1995). Laplace approximation of high-dimensional integrals. J. R. Statist. Soc. B, 57, 749-760.
    • Smyth, G. K. (2002). An efficient algorithm for REML in heteroscedastic regression. J.Comp. Graph. Statist., 11, 1-12.
    • Vaida, F. and Meng, X. L. (2004). Mixed linears models and the EM algorithm in Applied Bayesian and Causal Inference from an Incomplete Data...
    • Yates, F. (1933). The analysis of replicated experiments when the field results are incomplete. Emp. J. Exp. Agric., 1, 129-142.
    • Yun, S., Lee, Y. and Kenward, M. G. (2005). Using h-likelihood for missing observations. manuscript prepared for publication.
    • Zeger, S. L., Liang, K. Y. and Albert, P. S. (1988). Models for longitudinal data: a generalized estimating equation approach. Biometrics,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno