Ir al contenido

Documat


Another way to say subsolution: The maximum principle and sums of Green functions

  • Autores: R. S. Laugesen
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 97, Nº 1, 2005, págs. 127-153
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-14968
  • Enlaces
  • Resumen
    • Consider an elliptic second order differential operator L with no zeroth order term (for example the Laplacian L=−Δ). If Lu≤0 in a domain U, then of course u satisfies the maximum principle on every subdomain V⊂U. We prove a converse, namely that Lu≤0 on U if on every subdomain V, the maximum principle is satisfied by u+v whenever v is a finite linear combination (with positive coefficients) of Green functions with poles outside V¯¯¯¯. This extends a result of Crandall and Zhang for the Laplacian. We also treat the heat equation, improving Crandall and Wang's recent result. The general parabolic case remains open.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno